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Abstract
We present work-in-progress on RTG, a domain specific
language embedded in Haskell designed to explore the affor-
dances of geometry as a means to generate and manipulate
rhythmic patterns in live coded music. Examples of how sim-
ple geometry is capable of producing interesting rhythms
are shown to support our use of binary lists as a pattern
representation. We introduce Erlangen’s Program notion
of geometry as encoded in groups, using such structure as
the focus of a combinator interface based on an archetypal
RhythmicPattern type implemented using a type class. Ex-
amples of the interface usage are provided. Future work
targets the definition of Group instances for the rhythmic
pattern types such that the group laws are fulfilled and its
operations lift to the interface in a musically coherent and
engaging way.

CCS Concepts: • Applied computing → Sound and mu-
sic computing; • Software and its engineering→Domain
specific languages.
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1 Introduction
In previous work [5] we showcased design criteria for RTG:1
a live coding library for the generation and manipulation of
1The library’s source code repository: https://github.com/ninioArtillero/
RTG
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rhythm, influenced by the Tidal Cycles language.2 Its central
idea is the definition of group structures for rhythmic pattern
types (i.e. rhythm families defined by computational and
geometric considerations, represented using algebraic data
types), so that rhythms can transform one another.

Our canonical rhythmic pattern type is that of Euclidean
rhythms, shown briefly in section 2. Rhythmic patterns are
considered language primitives as values of such types. The
goal is to develop a concise and terse domain specific lan-
guage such that the combination and transformation of
rhythms is done within musically significant geometric con-
straints that afford effective exploration strategies during a
live coding performance. To the best of our knowledge this
is a novel approach to rhythm manipulation which is yet to
prove itself before an audience.
Studies of rhythm’s geometric properties are usually in-

tended for music theoretic analysis or music information
retrieval. In contrast, our approach is led by the intuition
that rhythm itself is a geometric aspect of time and the search
for the creative potential of such an aspect. This made us
speculate about an inner geometry of rhythm, hidden in its
group of transformations. We discuss group structure and the
Erlangen Program as the origin of our concept of geometry
in section 5.
The current prototype is build using lists and abstracts

musical rhythm to its bare bones. We motivate this simpli-
fication in section 2 by showing that interesting structure
persists in this setting. Next, in sections 3 and 4, we use the
Haskell’s type system to implement a shared interface for
distinct group operators that includes some basic combina-
tors.3 Afterwards, in section 6, we provide examples of the
interface use.

2 What about Geometry in Rhythm?
Rhythm is a multidimensional phenomenon, too complex to
account for in any single framework. In all its generality, it
could be described as a natural law underlying all dimensions
of being. In the case of music, aspects like volume, timbre
and cultural context underlie our perception (or induction) of
rhythm [2]. What is certain, and a useful approach towards

2Tidal Cycles oficial website: https://tidalcycles.org/
3We use the terms operator and operation in an interchangeable fashion,
as in many contexts they are equivalent. The former is more common in
programming, while the later in arithmetic.
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its computational abstraction, is that rhythm is fundamen-
tally bound to the arrangement of sound events in time. This
arrangement alone produces salient perceptual structures,
most notably meter and rhythmic grouping [2, 13], which
seem to correlate with geometric properties.
Toussaint’s [2020] working hypothesis is that geomet-

ric properties of rhythms translate to musical qualities that
consistently make them being perceived as good, evidenced
by their repeated appearance among diverse cultural con-
texts and musical styles. His paradigmatic example is the Son
Clave found in music genres related to the african diaspora
(its name comes from cuban music). It is a 5 onset pattern
in a 16 isochronous (i.e. of the same time duration) pulse
measure. We can represent this pattern as a list, where “1”
stands for a sound onset and “0” for a rest.4

son = [ 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 ]
An important family of pattern examples are Euclidean

rhythms. These are constructed using Björklund’s algorithm,
which is equivalent to Euclid’s algorithm for computing the
maximum common divisor of a pair of integers. Geometri-
cally, the (k,n) Euclidean rhythm can be described as the
configuration that maximizes the evenness of k ones among
n-k zeros in a binary pattern [12]. For example, the Euclidean
rhythm denoted by (7,12) is a common West African bell
pattern [12].
e ( 7 , 1 2 ) = [ 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 ]
Another interesting example discussed in Toussaint [2020]

is that of the rhythmic pattern used by Steve Reich in his
piece “Clapping Music”. Out of the 495 possible 8 onset in
12 pulses measure patterns, this pattern can be selected by
means of regularity and diversity constraints, like allowing
only one-pulse rests and excluding cyclic permutations. A
key constraint, which is relevant to the structure of “Clap-
ping Music”, is that the pattern doesn’t align with itself while
rotating it step-wise until it reaches the starting position.5
This pattern happens to be a rotation of another one obtained
as the result of superposing the three clapping patterns per-
formed in the Beer Dance of the Lala people [13].
c l a p 1 = [ 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ]
c l a p 2 = [ 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 ]
c l a p 3 = [ 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ]

beerDance = [ 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 ]

r e i c hP = [ 1 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 ]
4The terms onset and offset are standard in the theory of music, and refer to
the start and end (respectively) of a sound event associated with a specific
source. As part of the simplicity of our approach, we do not consider offsets.
5Steve Reich’s “Clapping Music” starts with two performers clapping this
pattern in unison. One of them will carry on this way the whole piece. After
every twelfth repetition, the other performer shifts its pattern by one step
(rotation). The piece ends after both performers play in unison again.

Incidentally, “Clapping Music” is a good fit for naming the
domain of rhythm the present work focuses on. Clapping is
commonly used when communicating a rhythmic pattern.
This might be related to its short and fast decaying enve-
lope resembling a time point in perception. These examples
show that engaging clapping music can be generated out
of a simple geometric procedure such as the Euclidean al-
gorithm or by the operation of superposition that underlies
polyrhythms.6

3 Representing Rhythm
Our model of rhythm is a sequence of isochronous sound on-
sets and rests called a RhythmicPattern. We implement this
in Haskell by first defining a Binary data type to represent
onsets and rests.
data Binary = Onset | Re s t

deriving (Eq , Ord )

instance Show Binary where
show Res t = show 0
show Onset = show 1

instance Semigroup Binary where
Res t <> Onset = Onset
Onset <> Res t = Onset
_ <> _ = Res t

instance Monoid B inary where
mempty = Res t

instance Group Binary where
i n v e r t = id

Listing 1. A binary data type representing sound onsets and
rests

We will discuss groups with some detail in section 5, but
for the time being we note that the Group instance provided
for the Binary type is isomorphic to the integers modulo 2
(which is the only group structure possible for a two value
type).7 We’ll use this type in the definition of our archetypal
rhythmic pattern type to have a standard way of combin-
ing onsets and rests. Now we define Rhythm as a newtype
wrapper around Pattern, which is a type synonym for lists.
type P a t t e r n a = [ a ]

newtype Rhythm a =
6It might be argued that these properties are arithmetic rather than geomet-
ric. Nevertheless, both fields of mathematics are intricately related to each
other [11], so for us this is a matter of appreciation and not an assertion on
mathematical classification.
7The Group type class is exported by the Data.Group module from the
groups package. https://hackage.haskell.org/package/groups
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Rhythm { getRhythm : : P a t t e r n a }

instance Functor Rhythm where
fmap f ( Rhythm xs ) = Rhythm ( fmap f xs )

instance App l i c a t i v e Rhythm where
pure xs = Rhythm $ pure xs
Rhythm f s <∗> Rhythm xs =

Rhythm ( zipWith ( $ ) f s xs )

instance Semigroup a =>
Semigroup ( Rhythm a ) where
Rhythm p t t r n 1 <> Rhythm p t t r n 2 =

Rhythm $ p t t r n 1 `Euc l i deanZ ip ` p t t r n 2

instance ( Semigroup a , Monoid a )
=> Monoid ( Rhythm a ) where
mempty = Rhythm $ repeat mempty

instance ( Semigroup a , Monoid a , Group a )
=> Group ( Rhythm a ) where
i n v e r t = fmap i n v e r t

Listing 2. Rhythm defined as a newtype wrapper around
the pattern type

The previous declarations are pretty straight forward, but
the Semigroup instance has some crucial consequences for
us, so we look into it. The constraint there is caused by the
EuclideanZip function. It works by zipping the k elements
of the smaller list as evenly as possible among the n elements
of the bigger list, combining then with the Semigroup opera-
tor, according to the Euclidean pattern (k,n) (see section 2).
In the case when both lists have the same length, it simply
does zipWith (<>) pttrn1 pttrn2.

This is not the only operation possible. Indeed, fromHaskell’s
type system point of view, we could implement it with any
operation imaginable as long as it fulfills the corresponding
function types (signatures). Nevertheless, one design strat-
egy is looking for simplicity and symmetry [5]. That such
an operation is a good fit is to be decided by its fulfillment
of group laws and its (musical) performance.

4 The Interface
Now we are in a position to display the full interface to
manipulate rhythmic patterns.

type RhythmicPa t t e rn = Rhythm Binary

c l a s s Semigroup a => Rhythmic a where

−− Minimal c omp l e t e d e f i n i t i o n .
toRhythm : : a −> RhythmicPa t t e rn

−− Group o p e r a t o r l i f t i n g .
(& ) : : Rhythmic b =>

a −> b −> RhythmicPa t t e rn
x & y = toRhythm x <> toRhythm y

( ! & ) : : a −> a −> RhythmicPa t t e rn
x !& y = toRhythm ( x <> y )

−− Ba s i c c omb i n a t o r s .
i nv : : a −> RhythmicPa t t e rn
co : : a −> RhythmicPa t t e rn
rev : : a −> RhythmicPa t t e rn
( | > ) : : Rhythmic b =>

a −> b −> RhythmicPa t t e rn
( <+ >) : : Rhythmic b =>

a −> b −> RhythmicPa t t e rn
Listing 3. The main rhythmic pattern interface

The default implementation of the basic combinators is
not shown. They are group inversion, complement, reverse,
sequencing and superposition, respectively. We have also
provided specifications for this functions as formal proper-
ties verifiable by QuickCheck, but are omitted here. Formal
verification, by proof or property based testing, is important
to assert a group structure.

The group lifting functions combine patterns using group
operations. As shown by their default implementations, val-
ues of any two rhythmic types can be combined with the
RhythmicPattern group operation after lifting the values
using the & operator. The !& operator combines the elements
of the same type using their group operation before lifting
the result. They don´t necessarily match, as the correspond-
ing group operations can be different. When group operators
are curried, each element of a group can be seen as a transfor-
mation for elements of the same group. Also, transformations
of objects and spaces form groups, and this simple fact take
us near the realm of geometry.

5 Groups and Geometry
Our focus on the search, definition and use of group oper-
ations for rhythmic pattern is founded on speculative pos-
sibilities informed by the Erlangen Program. In this section
we introduce it along with the laws defining the (algebraic)
group structure.
The Erlangen Program is a research program proposed

by Felix Klein at the end of the nineteen century, which
ultimately asserts the study of geometric structure and prop-
erties is equivalent to that of the invariants under a group of
transformations [14].

As an example, a polygon’s enclosing area, perimeter and
number or vertices are invariants of the group of isometric
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movements of the plane (any combination of translations, re-
flections and rotation). On the other hand, a regular polygon
on a specific configuration, for instance a triangle centered
in the coordinate origin on the plane, is invariant only under
a subgroup of the group of isometries of the whole plane.

In this context, a group is defined as a set with an associa-
tive binary operation (here represented polymorphically by
<>), having a unique identity element and a unique inverse
for each element. In terms of Haskell’s standard type classes,
a group is a type with a Subgroup and Monoid instances,
and also a Group instance implementing the invert function,
fulfilling the following laws (i.e. all expressions evaluate to
True for any elements x, y and z of the group):

( x <> y ) <> z == x <> ( y <> z )
mempty <> x == x
x <> mempty == x
i n v e r t x <> x == mempty
x <> i n v e r t x == mempty
Listing 4. Groups laws as Haskell boolean expressions

As simple as they are, the group laws encode the mathe-
matical notion of symmetry [14]. They tell us that property
preserving transformations compose and they can always
be undone by a corresponding (backwards) transformation.
At the time of Erlangen’s Program publication [7], geometry
was blooming into a diverse subject with the emergence of
non-Euclidean geometries, differential geometry and pro-
jective geometry. Perhaps this contrasted sharply with the
previous monolithic classical geometry (that of Euclid’s) and
a unifying framework was called forth. The Erlangen Pro-
gram today is perhaps an artifact in the history of mathemat-
ics, but it underlies many ground-breaking developments
in the theoretical physics of the twentieth centry, such as
Kaluza-Klein theory, Yang-Mills theory, string theory and
non-commutative geometry [6].

6 Usage and Examples
Euclidean rhythms (see section 2), onset binary patterns (the
archetypal RhythmicPattern type, as defined in listing 3) and
time patterns are our starting cases of rhythmic pattern types.
Time patterns are a collection of prescribed patterns, based
on equal-tempered scales and popular rhythmic timelines
[13].8

d i a t o n i c : : P a t t e r n Time
d i a t o n i c = [ 0 / 1 2 , 2 / 1 2 , 4 / 1 2 , 5 / 1 2 ,

7 / 1 2 , 9 / 1 2 , 1 1 / 1 2 ]

rumba : : P a t t e r n Time
rumba = [ 0 / 1 6 , 3 / 1 6 , 7 / 1 6 , 1 0 / 1 6 , 1 2 / 1 6 ]

8Timelines are short ostinatos that contextualize the other rhythmic and
melodic elements in a piece within a given style of music.

The elements of these patterns are rationals numbers nor-
malized to range from 0 to 1 non-inclusive, as 1 matches the
beginning of the next cycle. They are eventually converted
to the binary representation for playback (as all rhythmic
pattern types).

Rhythmic patterns are played in a cyclic fashion, repeated
indefinitely during a performance, and their playback tempo
is derived from a variable that defines how many times it is
played per second.
The group operations <> of the three types are imple-

mented as follows: As time patterns are just type synonyms,
we use the standard list append as operation. In the binary
representation this operation lifts to the superposition of
the patterns. Euclidean rhythms use modular arithmetic on
their tuple components. With its current operation the Eu-
clidean type has the following Cartesian product as denota-
tion: Z𝑛 × {𝑛} × Z𝑛 for all 𝑛 ∈ N.

Elements of both types can be lifted to a RhythmicPattern
using the toRhythm function, and are combined using the
euclideanZip function described at the end of section 3.
Space constraints prevent us from showing the implementa-
tions or detailed examples of the individual operations.9

What we have seen so far allows us to express the combi-
nation of scales and rhythms.

p layR $ d i a t o n i c & rumba & d im in i shed
−− [ 1 , 0 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 0 ]

The playR function implements rhythm playback. It is
currently a quick and dirty solution using the SuperDirt
sound engine and a clap sample.10 Euclidean rhythms can
be thrown into the mix.

p layR $ e ( 3 , 8 ) & e ( 1 3 , 3 3 ) & son
−− [ 1 , 0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 ,
−− 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 ]

playR $ e ( 3 , 8 ) !& e ( 1 3 , 3 3 ) & son
−− t o o l o ng t o d i s p l a y

When two patterns are combined with the & operator,
the RhythmicPattern operation is used, while !& uses the
specific rhythmic pattern type operation (so both patterns
must be of the same type). In other words, we have means
to choose the operation to use: each type’s own group oper-
ation or the RhythmicPattern one. Is also of note that these
operators substitute the direct use of <>. This is an elegant
way of experimenting with different combinators, thinking
of rhythmic patterns both as language primitives and group
elements leveraging ad-hoc polymorphism.

9The current implementation of the operations described can be found at
this point in the source code history: https://github.com/ninioArtillero/RTG/
tree/a3f90bb70105628c6eca17cf35c09b9ad7f28951
10SuperDirt source code repository: https://github.com/musikinformatik/
SuperDirt
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7 Discussion
Future work is aimed at testing and comparing alternative
representations of rhythmic patterns as the group opera-
tions proposed so far have failed to fulfill group laws. We
have focused on a variety of zip-like operations differing in
the way list elements are matched when list lengths are not
equal. Zip-like operations are natural candidates considering
rhythm is “temporal media”. As pointed out by Apfelmus
[2019], the other natural applicative structure for lists (as-
sociated with the standard monad instance) is analogous to
a product which might not be suitable for temporal media.
This could be signaling that either a relaxation of the group
axioms is called forth or that a different representation is
needed. Both cases would reveal an actual fact about the
structure of rhythmic patterns.
Also, rhythmic structure has the peculiarity of being a

second order pattern in the sense that the insertion of a
single onset changes the whole structure [10].

From this considerations, the implementation of the rhyth-
mic pattern representation as a binary list might need to
be enriched to carry more structural information. Maybe a
state monad to keep track of context information such as
rhythmic grouping (or clustering, to avoid confusion) and
meter, to bind it through exotic pattern combinators. Another
approach that has proven musically robust is Tidal Cycles
representation of patterns [8, 9] based on the Functional
Reactive Programming idea of a “behavior” as a function of
continuous time [4]. This approach has had a long life cycle
and has been subject to many refinements. Leveraging some
of this work might be of great value to our task.

8 Conclusions
We exposed the rhythmic pattern representation that sits at
the core of RTG’s prototype and showed some examples of
its intended use. The current aim is to provide a new way
of combining rhythmic patterns for live performance using
group structures.
During development the abstraction power of standard

type classes, like Functor and Applicative, play the role of
a gravitational field guiding design decisions and implemen-
tation strategies. Along our way, we keep finding clues and
intuitions supporting our search for the geometric structures
of rhythmic patterns. Existing limitations and inconsisten-
cies might be clues of where the inner geometry of time and
rhythm lies. Perhaps we need "some deeper structure, go-
ing far beyond the parts, points, local neighborhoods... and
fragmented classical geometrical views in general" [3]. For
certain, geometry is a field of mathematics that stills holds
promise for the domain of music creation.
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